Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Respir Res ; 25(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172839

ABSTRACT

Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.


Subject(s)
Cystic Fibrosis , Quercetin , Animals , Quercetin/metabolism , Quercetin/pharmacology , Cellular Senescence , Lung/metabolism , Cystic Fibrosis/metabolism , Gene Expression Profiling , Doxorubicin/pharmacology , Doxorubicin/metabolism , Organoids/metabolism
2.
Am J Respir Cell Mol Biol ; 70(3): 203-214, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38051640

ABSTRACT

Alveolar type 2 and club cells are part of the stem cell niche of the lung and their differentiation is required for pulmonary homeostasis and tissue regeneration. A disturbed crosstalk between fibroblasts and epithelial cells contributes to the loss of lung structure in chronic lung diseases. Therefore, it is important to understand how fibroblasts and lung epithelial cells interact during regeneration. Here, we analyzed the interaction of fibroblasts and the alveolar epithelium modeled in air-liquid interface cultures. Single-cell transcriptomics showed that cocultivation with fibroblasts leads to increased expression of type 2 markers in pneumocytes, activation of regulons associated with the maintenance of alveolar type 2 cells (e.g., Etv5), and transdifferentiation of club cells toward pneumocytes. This was accompanied by an intensified transepithelial barrier. Vice versa, the activation of NF-κB pathways and the CEBPB regulon and the expression of IL-6 and other differentiation factors (e.g., fibroblast growth factors) were increased in fibroblasts cocultured with epithelial cells. Recombinant IL-6 enhanced epithelial barrier formation. Therefore, in our coculture model, regulatory loops were identified by which lung epithelial cells mediate regeneration and differentiation of the alveolar epithelium in a cooperative manner with the mesenchymal compartment.


Subject(s)
Alveolar Epithelial Cells , Transcriptome , Animals , Mice , Transcriptome/genetics , Interleukin-6 , Epithelial Cells , Fibroblasts
3.
J Transl Autoimmun ; 5: 100171, 2022.
Article in English | MEDLINE | ID: mdl-36425003

ABSTRACT

Long COVID is a collection of symptoms as a late sequelae of SARS-CoV-2 infection. It often includes mental symptoms such as cognitive symptoms, persisting loss of smell and taste, in addition to exertional dyspnea. A role of various autoantibodies (autoAbs) has been postulated in long-COVID and is being further investigated. With the goal of identifying potentially unknown autoAbs, we screened plasma of patients with long COVID on in-house post-translationally modified protein macroarrays including citrullinated, SUMOylated and acetylated membranes. SUMO1ylated isoform DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 35 (SUMO1-DHX35) was identified as only candidate antigen. In adult patients with long COVID, IgG autoAbs against SUMO1-DHX35 of IgG class were found in seven of 71 (9.8%) plasma samples, of IgM and IgG class in one of 69 (1.4%) samples, not in 200 healthy adult controls, not in 442 healthy children, and 146 children after SARS-CoV-2 infection. All autoAb-positive seven patients were female. AutoAb titers ranged between 200 to up to 400 By point mutagenesis and expression of FLAG-tagged mutants of DHX35 in HEK293 cells, and subsequent SUMOylation of purified constructs, lysine 53 was identified as a unique, never yet identified, SUMOylation site. The autoAbs had no reactivity against the non-SUMO1ylated mutant (K53R) of DHX35. To summarize, autoAbs against SUMO1-DHX35 were identified in adult female patients with long-COVID. Further studies are needed to verify the frequency of occurrence. The function of DHX35 has not yet been determined and there is no available information in relation to disease implication. The molecular mechanism causing the SUMOylation, the potential functional consequences of this post-translational modification on DHX35, and a potential pathogenicity of the autoAbs against SUMO1-DHX35 in COVID-19 and other possible contexts remain to be elucidated.

4.
J Clin Med ; 11(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36431276

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19) pandemic, leads to illness and death. Various risk factors for a severe course, such as higher age, male gender and pre-existing illnesses are known. However, pathophysiological risk factors are largely unclear. Notably, the mild course of disease in children is conspicuous. Angiotensin converting enzyme 2 (ACE2) serves as a receptor for SARS-CoV-2 and is a key enzyme in infection. Differences in the distribution of ACE2 can provide insights into different courses of COVID-19. Our aim was to elucidate the role of ACE2 as a pathophysiological risk factor by measuring soluble ACE2 (sACE2) via ELISA in blood samples (lithium-heparin-plasma or serum) of 367 individuals including children and adults with and without COVID-19. sACE2-levels were compared between the groups according to age and sex. In adults and children with COVID-19, sACE2-concentrations are significantly higher compared to healthy individuals. sACE2-levels increase with age and are lower in children compared to adults with COVID-19. Sex doesn't significantly influence sACE2-concentration. It remains unclear whether sACE2 concentrations increase because of the infection and what factors could influence this response. In conclusion, the increase of sACE2-concentration with age could indicate that ACE2 concentrations mirror increased COVID-19 severity.

5.
Metabolites ; 12(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36355140

ABSTRACT

Pneumonia is a common cause of morbidity and mortality and is most often caused by bacterial pathogens. COVID-19 is characterized by lung infection with potential progressive organ failure. The systemic consequences of both disease on the systemic blood metabolome are not fully understood. The aim of this study was to compare the blood metabolome of both diseases and we hypothesize that plasma metabolomics may help to identify the systemic effects of these diseases. Therefore, we profiled the plasma metabolome of 43 cases of COVID-19 pneumonia, 23 cases of non-COVID-19 pneumonia, and 26 controls using a non-targeted approach. Metabolic alterations differentiating the three groups were detected, with specific metabolic changes distinguishing the two types of pneumonia groups. A comparison of venous and arterial blood plasma samples from the same subjects revealed the distinct metabolic effects of pulmonary pneumonia. In addition, a machine learning signature of four metabolites was predictive of the disease outcome of COVID-19 subjects with an area under the curve (AUC) of 86 ± 10 %. Overall, the results of this study uncover systemic metabolic changes that could be linked to the etiology of COVID-19 pneumonia and non-COVID-19 pneumonia.

6.
PLoS One ; 17(10): e0275181, 2022.
Article in English | MEDLINE | ID: mdl-36251689

ABSTRACT

BACKGROUND: Glycyrrhizin, an active component of liquorice root extract, exhibits antiviral and immunomodulatory properties by direct inhibition of the pro-inflammatory alarmin HMGB1 (High-mobility group box 1). OBJECTIVE: The aim of this study was to explore the role of liquorice intake on the viral entry receptor ACE2 (angiotensin-converting enzyme 2) and the immunoregulatory HMGB1 in healthy individuals and to explore HMGB1 expression in coronavirus disease 2019 (COVID-19) or non-COVID-19 in ARDS (acute respiratory distress syndrome patients). MATERIAL AND METHODS: This study enrolled 43 individuals, including hospitalised patients with i) acute respiratory distress syndrome (ARDS) due to COVID-19 (n = 7) or other underlying causes (n = 12), ii) mild COVID-19 (n = 4) and iii) healthy volunteers (n = 20). Healthy individuals took 50 g of liquorice (containing 3% liquorice root extract) daily for 7 days, while blood samples were collected at baseline and on day 3 and 7. Changes in ACE2 and HMGB1 levels were determined by Western blot analysis and enzyme-linked immunosorbent assay, respectively. Additionally, HMGB1 levels were measured in hospitalised COVID-19 patients with mild disease or COVID-19 associated acute respiratory distress syndrome (ARDS) and compared with a non-COVID-19-ARDS group. RESULTS: Liquorice intake significantly reduced after 7 days both cellular membranous ACE2 expression (-51% compared to baseline levels, p = 0.008) and plasma HMGB1 levels (-17% compared to baseline levels, p<0.001) in healthy individuals. Half of the individuals had a reduction in ACE2 levels of at least 30%. HMGB1 levels in patients with mild COVID-19 and ARDS patients with and without COVID-19 were significantly higher compared with those of healthy individuals (+317%, p = 0.002), but they were not different between COVID-19 and non-COVID-19 ARDS. CONCLUSIONS: Liquorice intake modulates ACE2 and HMGB1 levels in healthy individuals. HMGB1 is enhanced in mild COVID-19 and in ARDS with and without COVID-19, warranting evaluation of HMGB1 as a potential treatment target and glycyrrhizin, which is an active component of liquorice root extract, as a potential treatment in COVID-19 and non-COVID-19 respiratory disease.


Subject(s)
COVID-19 Drug Treatment , Glycyrrhiza , HMGB1 Protein , Respiratory Distress Syndrome , Alarmins , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Glycyrrhiza/metabolism , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , HMGB1 Protein/metabolism , Humans , Pilot Projects , Receptors, Virus/metabolism , Respiratory Distress Syndrome/drug therapy
7.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887096

ABSTRACT

Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449-/- mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449-/- mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449-/- mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449-/- cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.


Subject(s)
Aurora Kinase A/metabolism , Histone Deacetylase 6/metabolism , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Animals , Aurora Kinase A/genetics , Cilia/genetics , Epithelial Cells , Mice , MicroRNAs/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Tubulin/genetics
8.
Genomics Proteomics Bioinformatics ; 20(2): 405-417, 2022 04.
Article in English | MEDLINE | ID: mdl-35680095

ABSTRACT

High-quality DNA extraction is a crucial step in metagenomic studies. Bias by different isolation kits impairs the comparison across datasets. A trending topic is, however, the analysis of multiple metagenomes from the same patients to draw a holistic picture of microbiota associated with diseases. We thus collected bile, stool, saliva, plaque, sputum, and conjunctival swab samples and performed DNA extraction with three commercial kits. For each combination of the specimen type and DNA extraction kit, 20-gigabase (Gb) metagenomic data were generated using short-read sequencing. While profiles of the specimen types showed close proximity to each other, we observed notable differences in the alpha diversity and composition of the microbiota depending on the DNA extraction kits. No kit outperformed all selected kits on every specimen. We reached consistently good results using the Qiagen QiAamp DNA Microbiome Kit. Depending on the specimen, our data indicate that over 10 Gb of sequencing data are required to achieve sufficient resolution, but DNA-based identification is superior to identification by mass spectrometry. Finally, long-read nanopore sequencing confirmed the results (correlation coefficient > 0.98). Our results thus suggest using a strategy with only one kit for studies aiming for a direct comparison of multiple microbiotas from the same patients.


Subject(s)
Metagenome , Microbiota , Humans , Metagenomics/methods , Microbiota/genetics , Feces , High-Throughput Nucleotide Sequencing/methods , DNA/genetics , DNA, Bacterial/genetics
9.
J Clin Invest ; 132(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35503420

ABSTRACT

Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.


Subject(s)
Bacterial Infections , Taste , Animals , Epithelial Cells , Immunity, Innate , Mice , Pseudomonas aeruginosa , Signal Transduction , Taste/physiology , Trachea
10.
Respir Res ; 23(1): 1, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983515

ABSTRACT

BACKGROUND: Both allergen-specific IgE and total IgE in serum play a major role in asthma. However, the role of IgE in chronic obstructive pulmonary disease (COPD) is poorly understood. It was the aim of this study to systematically analyze the relationship between serum IgE levels and disease characteristics in large COPD cohorts. METHODS: COSYCONET is a comprehensively characterized cohort of patients with COPD: total IgE and IgE specific to common aeroallergens were measured in serum of 2280 patients, and related to clinical characteristics of the patients. WISDOM is another large COPD population (2477 patients): this database contains the information whether total IgE in serum was elevated (≥ 100 IU/l) or normal in patients with COPD. RESULTS: Both in COSYCONET and WISDOM, total IgE was elevated (≥ 100 IU/l) in > 30% of the patients, higher in men than in women, and higher in currently than in not currently smoking men. In COSYCONET, total IgE was elevated in patients with a history of asthma and/or allergies. Men with at least one exacerbation in the last 12 months (50.6% of all men in COSYCONET) had higher median total IgE (71.3 IU/l) than men without exacerbations (48.3 IU/l): this difference was also observed in the subgroups of not currently smoking men and of men without a history of asthma. Surprisingly, a history of exacerbations did not impact on total IgE in women with COPD. Patients in the highest tertiles of total IgE (> 91.5 IU/ml, adjusted OR: 1.62, 95% CI 1.12-2.34) or allergen-specific IgE (> 0.19 IU/ml, adjusted OR: 2.15, 95% CI 1.32-3.51) were at risk of lung function decline (adjusted by: age, gender, body mass index, initial lung function, smoking status, history of asthma, history of allergy). CONCLUSION: These data suggest that IgE may play a role in specific COPD subgroups. Clinical trials using antibodies targeting the IgE pathway (such as omalizumab), especially in men with recurrent exacerbations and elevated serum IgE, could elucidate potential therapeutic implications of our observations.


Subject(s)
Immunoglobulin E/blood , Immunoglobulin E/immunology , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Biomarkers/blood , Disease Progression , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/immunology , Respiratory Function Tests , Retrospective Studies
11.
Biomolecules ; 11(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34827697

ABSTRACT

Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.


Subject(s)
Plasmalogens , Animals , Carnitine , Cholecalciferol , Ethanolamine , Mice
12.
J Inflamm Res ; 14: 4651-4667, 2021.
Article in English | MEDLINE | ID: mdl-34552347

ABSTRACT

BACKGROUND: COVID-19 comprises several severity stages ranging from oligosymptomatic disease to multi-organ failure and fatal outcomes. The mechanisms why COVID-19 is a mild disease in some patients and progresses to a severe multi-organ and often fatal disease with respiratory failure are not known. Biomarkers that predict the course of disease are urgently needed. The aim of this study was to evaluate a large spectrum of established laboratory measurements. PATIENTS AND METHODS: Patients from the prospective PULMPOHOM and CORSAAR studies were recruited and comprised 35 patients with COVID-19, 23 with conventional pneumonia, and 28 control patients undergoing elective non-pulmonary surgery. Venous blood was used to measure the serum concentrations of 79 proteins by Luminex multiplex immunoassay technology. Distribution of biomarkers between groups and association with disease severity and outcomes were analyzed. RESULTS: The biomarker profiles between the three groups differed significantly with elevation of specific proteins specific for the respective conditions. Several biomarkers correlated significantly with disease severity and death. Uniform manifold approximation and projection (UMAP) analysis revealed a significant separation of the three disease groups and separated between survivors and deceased patients. Different models were developed to predict mortality based on the baseline measurements of several protein markers. A score combining IL-1ra, IL-8, IL-10, MCP-1, SCF and CA-9 was associated with significantly higher mortality (AUC 0.929). DISCUSSION: Several newly identified blood markers were significantly increased in patients with severe COVID-19 (AAT, EN-RAGE, myoglobin, SAP, TIMP-1, vWF, decorin) or in patients that died (IL-1ra, IL-8, IL-10, MCP-1, SCF, CA-9). The use of established assay technologies allows for rapid translation into clinical practice.

13.
Mol Oncol ; 15(12): 3559-3577, 2021 12.
Article in English | MEDLINE | ID: mdl-34469022

ABSTRACT

Cervical cancer therapy is still a major clinical challenge, as patients substantially differ in their response to standard treatments, including chemoradiotherapy (CRT). During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients and are associated with poor prognosis. In this prospective study, we find increased Th17 frequencies in the blood of patients after chemoradiotherapy and a post-therapeutic ratio of Th17/CD4+ T cells > 8% was associated with early recurrence. Furthermore, Th17 cells promote resistance of cervical cancer cells toward CRT, which was dependent on the AKT signaling pathway. Consistently, patients with high Th17 frequencies in pretherapeutic biopsies exhibit lower response to primary CRT. This work reveals a key role of Th17 cells in CRT resistance and elevated Th17 frequencies in the blood after CRT correspond with early recurrence. Our results may help to explain individual treatment responses of cervical cancer patients and suggest evaluation of Th17 cells as a novel predictive biomarker for chemoradiotherapy responses and as a potential target for immunotherapy in cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Chemoradiotherapy , Female , Humans , Prospective Studies , Recurrence , Th17 Cells , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology
14.
Kidney Int ; 100(5): 1081-1091, 2021 11.
Article in English | MEDLINE | ID: mdl-34237325

ABSTRACT

Chronic kidney disease (CKD) represents a global public health problem with high disease related morbidity and mortality. Since CKD etiology is heterogeneous, early recognition of patients at risk for progressive kidney injury is important. Here, we evaluated the tubular epithelial derived glycoprotein dickkopf-3 (DKK3) as a urinary marker for the identification of progressive kidney injury in a non-CKD cohort of patients with chronic obstructive pulmonary disease (COPD) and in an experimental model. In COSYCONET, a prospective multicenter trial comprising 2,314 patients with stable COPD (follow-up 37.1 months), baseline urinary DKK3, proteinuria and estimated glomerular filtration rate (eGFR) were tested for their association with the risk of declining eGFR and the COPD marker, forced expiratory volume in one second. Baseline urinary DKK3 but not proteinuria or eGFR identified patients with a significantly higher risk for over a 10% (odds ratio: 1.54, 95% confidence interval: 1.13-2.08) and over a 20% (2.59: 1.28-5.25) decline of eGFR during follow-up. In particular, DKK3 was associated with a significantly higher risk for declining eGFR in patients with eGFR over 90 ml/min/1.73m2 and proteinuria under 30 mg/g. DKK3 was also associated with declining COPD marker (2.90: 1.70-4.68). The impact of DKK3 was further explored in wild-type and Dkk3-/- mice subjected to cigarette smoke-induced lung injury combined with a CKD model. In this model, genetic abrogation of DKK3 resulted in reduced pulmonary inflammation and preserved kidney function. Thus, our data highlight urinary DKK3 as a possible marker for early identification of patients with silent progressive CKD and for adverse outcomes in patients with COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Renal Insufficiency, Chronic , Animals , Disease Progression , Glomerular Filtration Rate , Humans , Kidney , Mice , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Renal Insufficiency, Chronic/diagnosis
15.
Adv Sci (Weinh) ; 8(12): e2004369, 2021 06.
Article in English | MEDLINE | ID: mdl-34165899

ABSTRACT

Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10-9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.


Subject(s)
Biofilms/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Quinolones/agonists , Quorum Sensing/drug effects , Tobramycin/pharmacology , Animals , Disease Models, Animal , Mice
17.
Nature ; 594(7862): 265-270, 2021 06.
Article in English | MEDLINE | ID: mdl-34040261

ABSTRACT

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Subject(s)
Blockchain , Clinical Decision-Making/methods , Confidentiality , Datasets as Topic , Machine Learning , Precision Medicine/methods , COVID-19/diagnosis , COVID-19/epidemiology , Disease Outbreaks , Female , Humans , Leukemia/diagnosis , Leukemia/pathology , Leukocytes/pathology , Lung Diseases/diagnosis , Machine Learning/trends , Male , Software , Tuberculosis/diagnosis
18.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L958-L968, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33759577

ABSTRACT

Chronic obstructive lung disease (COPD) and lung cancer are both caused by smoking and often occur as comorbidity. The programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis is an important canonic immunoregulatory pathway, and antibodies that specifically block PD-1 or PD-L1 have demonstrated efficacy as therapeutic agents for non-small cell lung cancer. The role of the PD-1/PD-L1 axis in the pathogenesis of COPD is unknown. Here, we analyzed the function of the PD-1/PD-L1 axis in preclinical COPD models and evaluated the concentrations of PD-1 and PD-L1 in human serum and bronchoalveolar lavage (BAL) fluids as biomarkers for COPD. Anti-PD-1 treatment decreased lung damage and neutrophilic inflammation in mice chronically exposed to cigarette smoke (CS) or nontypeable Haemophilus influenzae (NTHi). Ex vivo stimulated macrophages obtained from anti-PD-1-treated mice released reduced amounts of inflammatory cytokines. PD-L1 concentrations correlated positively with PD-1 concentrations in human serum and BAL fluids. Lung sections obtained from patients with COPD stained positive for PD-L1. Our data indicate that the PD-1/PD-L1 axis is involved in developing inflammation and tissue destruction in COPD. Inflammation-induced activation of the PD-1 pathway may contribute to disease progression.


Subject(s)
Lung/metabolism , Macrophages, Alveolar/metabolism , Neutrophils/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Disease Models, Animal , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Macrophages, Alveolar/pathology , Male , Mice , Neutrophils/pathology , Programmed Cell Death 1 Receptor/metabolism , Prospective Studies , Pulmonary Disease, Chronic Obstructive/pathology
19.
PLoS One ; 16(1): e0243484, 2021.
Article in English | MEDLINE | ID: mdl-33411748

ABSTRACT

Neutrophilic inflammation results in loss of lung function in chronic obstructive pulmonary disease (COPD). Gram-negative bacteria, such as nontypeable Haemophilus influenzae (NTHi), trigger acute exacerbations of COPD (AECOPD) and contribute to chronic lung inflammation. The pro-inflammatory cytokine interleukin-17C (IL-17C) is expressed by airway epithelial cells and regulates neutrophilic chemotaxis. Here, we explored the function of IL-17C in NTHi- and cigarette smoke (CS)-induced models of COPD. Neutrophilic inflammation and tissue destruction were decreased in lungs of IL-17C-deficient mice (Il-17c-/-) chronically exposed to NTHi. Numbers of pulmonary neutrophils were decreased in Il-17c-/- mice after acute exposure to the combination of NTHi and CS. However, Il-17c-/- mice were not protected from CS-induced lung inflammation. In a preliminary patient study, we show that IL-17C is present in sputum samples obtained during AECOPD and associates with disease severity. Concentrations of IL-17C were significantly increased during advanced COPD (GOLD III/IV) compared to moderate COPD (GOLD I/II). Concentrations of IL-17A and IL-17E did not associate with disease severity. Our data suggest that IL-17C promotes harmful pulmonary inflammation triggered by bacteria in COPD.


Subject(s)
Disease Progression , Haemophilus influenzae/physiology , Interleukin-17/metabolism , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology , Sputum/microbiology , Acute Disease , Aged , Animals , Cigarette Smoking/adverse effects , Cytokines/metabolism , Female , Humans , Male , Mice, Inbred C57BL , Neutrophils/pathology
20.
Sci Rep ; 10(1): 16502, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020513

ABSTRACT

Lung infections caused by Pseudomonas aeruginosa pose a serious threat to patients suffering from, among others, cystic fibrosis, chronic obstructive pulmonary disease, or bronchiectasis, often leading to life-threatening complications. The establishment of a chronic infection is substantially related to communication between bacteria via quorum-sensing networks. In this study, we aimed to assess the role of quorum-sensing signaling molecules of the Pseudomonas quinolone signal (PQS) and to investigate the viscoelastic properties of lung tissue homogenates of PA-infected mice in a prolonged acute murine infection model. Therefore, a murine infection model was successfully established via intra-tracheal infection with alginate-supplemented Pseudomonas aeruginosa NH57388A. Rheological properties of lung homogenates were analyzed with multiple particle tracking (MPT) and quorum-sensing molecules were quantified with LC-MS/MS. Statistical analysis of bacterial load and quorum-sensing molecules showed a strong correlation between these biomarkers in infected lungs. This was accompanied by noticeable changes in the consistency of lung homogenates with increasing infection severity. Furthermore, viscoelastic properties of the lung homogenates strongly correlated with bacterial load and quorum sensing molecules. Considering the strong correlation between the viscoelasticity of lung homogenates and the aforementioned biomarkers, the viscoelastic properties of infected lungs might serve as reliable new biomarker for the evaluation of the severity of P. aeruginosa infections in murine models.


Subject(s)
Pneumonia/microbiology , Pseudomonas Infections/physiopathology , Animals , Bacterial Load/methods , Chromatography, Liquid/methods , Disease Models, Animal , Female , Lung/microbiology , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing/immunology , Respiratory Tract Infections/microbiology , Rheology/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...